Exam Program Correctness, May 6th 2015, 18:30-21:30h.

- This exam consists of three problems. Problem 1 is worth 20 points, problem 2 is worth 30 points, and problem 3 is worth 40 points. You get 10 points for not misspelling your name and student number.
- Give complete annotations, and linear proofs. Use a pen. Do not use a pencil!
- The exam is a closed book exam. You are not allowed to use the reader, slides, notes, or any other material.
- Do not hand in scratch paper!

Problem $1(2 \times 10=20$ pt $)$. Declared is the variable $x: \mathbb{Z}$.
(a) Design an annotated command S_{0} that satisfies the Hoare triple:

$$
\{x=X\} \quad S_{0} \quad\{x>0 \wedge(x=2 \cdot X+1 \vee x=-2 \cdot X)\}
$$

(b) Design an annotated command S_{1} that satisfies the reverse Hoare triple:

$$
\{x>0 \wedge(x=2 \cdot X+1 \vee x=-2 \cdot X)\} \quad S_{1} \quad\{x=X\}
$$

Problem $2(30 \mathbf{p t})$. Design and prove the correctness of a command T that satisfies

```
const n:\mathbb{N, a: array [0..n) of }\mathbb{Z};
var s:\mathbb{Z}
    {P: true }
T
    {Q:s=\Sigma(\Sigma(a[j]\cdota[k]|j,k:i\leqj\leqk<n)|i:0\leqi<n)}.
```

The time complexity of the command T must be linear in n. Start by defining (a) suitable helper function(s) and the corresponding recurrence(s).

Problem 3 (40 pt). Given is a two-dimensional array a that is ascending in its first argument and decreasing in its second argument. Consider the following specification:

```
const \(n, w: \mathbb{N}, \quad a:\) array \([0 . . n)\) of \(\mathbb{N}\);
    \(\operatorname{var} z: \mathbb{N}\);
        \(\left\{P: Z=\#\left\{(i, j) \mid i, j: 0 \leq i \wedge 0 \leq j \wedge i^{2}+j^{2} \leq n^{2} \wedge a[i, j]=w\right\}\right\}\)
    U
        \(\{Q: Z=z\}\)
```

(a) Make a sketch in which you clearly indicate where the array values are high, where they are low, and how a contour line runs.
(b) Define a function $F(x, y)$ that can be used to compute Z. Determine the relevant recurrences for $F(x, y)$, including the base cases.
(c) Design a command U that has a linear time complexity in n. Prove the correctness of your solution. [Note: you can only receive points for part (c) if the recurrences in part (b) are correct.]

